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Abstract. In this work we describe a path choice model in which costs are
represented by fuzzy numbers in order to consider uncertainty of users and
trying to overcome some limits of well know logit based choice models. Users’
estimation costs in order to choice a route over a road network is made in a real
uncertain, imprecise and ambiguous environment. As suggested by research in
this field, fuzzy numbers is a suitable framework to model such choice context.
In this paper, we analyse path costs represented by Fuzzy Numbers. For the
fuzzification of the crisp value of the cost we introduce a parameter, that aims at
representing the imprecision of users in path cost perception. We assume that
users associate a preference index to the paths according to the estimated costs
and that the probability of choice of a path is proportional to the preference
index. Moreover, we introduce an index for evaluating the overlapping degree of
each path with the others. In this way, we overcome the problem due to the
Independence from Irrelevant Alternatives (IIA) of Logit based models, which
rises for overlapping paths. The method allows to reproduce user choices as
compared to other well established ones.

Keywords: Traffic assignment � Route choice � Fuzzy sets � Uncertainty �
Overlapping paths

1 Introduction

Traffic assignment models (TAMs) are powerful tools to reproduce users’ choices over
a transport network. TAMs are based on path choice models; traditional path choice
models (deterministic models and stochastic models) are based on the comparison
between path costs with crisp numbers. The deterministic choice models assumes that
users perceive exactly each path cost, and choose the one having the maximum utility.
Thus, each user chooses minimum cost path, and does not consider any other path. This
leads to the well-known “All or Nothing” assignment model.

Generally, reproduction of real perceived cost is not an easy task, and the analyst
does not exactly know the utility that users associate to each alternative (perceived
utility). The perceived utility can be different from the average value (i.e. systematic
utility) [23]. Therefore, some users can choose a path different from the minimum cost
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one, and consequently, a choice probability greater than zero occurs for all the possible
paths belonging to the users’ choice set.

To reproduce this situation thewell-established randomutilitymodels are used (Logit,
Gammit, Probit and their further specifications are the most known) (see for ex. [7]).

Several models based on fuzzy set theory for network assignment have been pro-
posed in literature [2, 10, 11, 20, 24–26].

Fuzzy set theory-based route choice model was proposed for the first time by
Teodorović and Kikuchi [27]. Their research was followed by many works using fuzzy
set theory and based on different approaches.

Wang and Liao [28] considered the traffic assignment problem when the elements
of the incidence matrix representing the graph of the transportation network is assumed
fuzzy, in the sense that, the arcs chosen into the desired path for travelling from and
Origin to a destination is represented as uncertain. Lotan and Koutsopoulos [16]
developed a model that uses the concepts of approximate reasoning for route choice in
the presence of information by mean of fuzzy inference approach. Peeta and Yu [21] set
up a hybrid (fuzzy–probabilistic) model to study the effect of information on travellers’
behaviour. Chang and Chen [9] formulated a link-based fuzzy user-optimal route
choice problem embedding link interactions using the variational inequality approach.

Henn [14] proposed a route choice model taking account of the imprecision and the
uncertainty lying in the dynamic choice process. Okada and Soper [19] focused their
work on a shortest path problem on a network in which a fuzzy number is used to
represent the length of each arch belonging to the network. Henn and Ottomanelli [15]
analysed the role of uncertainty based on the Possibility Theory framework and dis-
cussed the pitfalls of some random utility route choice models. They focused on two
types of uncertainty: route capacity and free-flow costs. The proposed model, based on
possibility theory, shows the different choice behaviour with respect the two uncer-
tainties. Bin et al. [3] proposed a traffic assignment model that is solved by a
heuristic-based algorithm which combines the fuzzy shortest path algorithm and the
C-Logit method.

Ghatee and Hashemi [12] assumed a fuzzy level of travel demand and found a
fuzzy equilibrium flow that satisfies a quasi-logit formula for the network. Murat and
Uludag [18] presented route choice model of transportation network based on fuzzy
logic model (FLM), logistic regression model (LRM) and survey-based data. The
model considered four parameters (traffic safety, travel time, congestion and environ-
mental effects).

Recently, in [17] a method for fusing data relevant both to drivers’ experience and
provided information about travel time is proposed. The method was based on the
Uncertainty-based Information Theory and takes into account the “compatibility” of
data originating from different sources, and provides information about acceptability of
results.

Our work starts from the work by Akiyama and Kawahara [1] that modelled the
route choice behaviour with the values of possibility between fuzzy goal and the fuzzy
travel time for the individual routes.

The purpose of this paper is to define a simplified route choice model able to
reproduce the imprecision, uncertainty and vagueness typical of the perceived costs. In
our hypothesis the user will choice the path according to the comparison between the
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estimated costs for all the paths. These values are imprecise, therefore the user must
choose on the base of ambiguous quantities and on the base of approximate computing.
Such an environment can be represented and handled in the framework of fuzzy
numbers. The effective travel time will respect the foresight in a certain measure, due
to the fuzzy nature of the problem. This measure decreases as much as the effective cost
is far from the estimated value.

The paper is developed as it follows. In Sect. 2, we describe in detail the path
choice model and some examples on simplified cases. In Sect. 3, we describe the
results on a test network with the equilibrium assignment. Finally, in the last section,
we focus on the conclusions and possible developments of the research.

2 The Route Choice Model

The proposed model is based on the following basic assumptions:

1. The user “i” considers all the alternatives, which define his choice setIi.
2. The user “i” associates to each alternative j2Ii the perceived utility Ui

j

3. The utility Ui
j assigned to each alternative depends on a number of measurable

characteristics Xi
j , or attributes, that are related to the alternative itself and to the

user; then Ui
j = Ui Xi

j

� �
.

4. The utility that the user “i” associates to alternative j is not exactly known by the
analyst, and in every case it is imprecise for the users. Such perceived utility can be
represented by a fuzzy number.

On the basis of the given assumptions, it is possible to define the probability that
the decision-maker (i.e. user) will select the alternative j conditional on his choice set Ii

proportionally to the preference associated to this alternative, as it will be shown further
on.

2.1 The Representation of Path Costs by Fuzzy Number

Path and arc costs are specified by means of Triangular Fuzzy Numbers (TFN) that is
represented by the triple (xL, x, xR), where xL, x and xR are, respectively, the lower (or
left) limit, the central value and the upper (or right) limit. The difference |xR−xL| is the
so-called “support” of the TFN. To obtain the fuzzy number relevant to the crisp value
“x” (i.e. fuzzification) [4] we use a parameter a2[0, 1] and then we determine the
relevant TFN by computing the characteristics points given by the lower (xL) and the
upper (xR) limits of the TFN as follows:

xR ¼ x � ð1þ aÞ; xL ¼ x � ð1� aÞ

In Fig. 1 we represent the TFN corresponding to the values 5 and 7, considering
a = 0.200.
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Let us consider the sum x + y = z, with x and y crisp values. If we add the
correspondent TFN (x, y) we obtain “x⊕y = z”. In other words, if the value of a is the
same for all the TFNs, then the TFN obtained as result of crisp sum is equal to the sum
of the TFNs relative to the crisp terms. In this way, our method respects the inde-
pendence by the segmentation of the arcs.

Let consider the following example: let assume two independent paths, the first one
made up of a single arc whose costs is 30 and a second one constituted by five arcs
whose costs is 6. By applying the proposed method, the two paths have equal crisp cost
and equal fuzzy cost: the correspondent TFNs (that represent two paths with the same
utility) are identical, as it must be.

The parameter a represents the imprecision of users’ prediction (or perception) of
path travel time/cost. If this imprecision is null, we assume a = zero. In this case the
choice is based on crisp values: the minimum path(s) cost only is (are) chosen. If users
will perceive as convenient also other paths (not only the minimum cost one), they will
split on them: in this case a 6¼ 0. The value of a is the same for all the paths (only if we
have ATIS systems on the network we could have more values for a). Therefore, the
support (i.e. base) of the TFN corresponding to the cost “X” (equal to 2aX) is variable,
and depends on the crisp value of the cost.

Each user has a different ability to predict (assess) the path travel time. We cannot
define a value for each user. Thus, for sake of simplicity, it is advisable to consider an
average value of a as representative for all the users belonging to the same class (or
category).

Let us analyze the dependence of a on Origin-Destination (O/D) pair. We assume
that a is the same for all O/D pairs, i.e. users perceive the state of the network in the
same way. If we assign different values of a to different O/D pairs, we would assume
that the users of each O/D pair perceive differently the network state. Moreover, we
assume that the user is not able to predict the travel time on a certain arc more
accurately than other arcs1. Thus, we suggest that the value of a will depend from the
urban network, the user class and the time period. Naturally, the parameter a have to be
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Fig. 1. Representation of costs by Triangular Fuzzy Numbers

1 This assumption may fall if in the network there are some VMS. In this situation it might be realistic
reduce the a value for the relative arc. In this study, we assume that in the network there aren’t VMS.
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calibrated. Notwithstanding, we will not discuss about calibration of a since it is out of
the scope of this paper. On this topic, the interested reader could refers to the works by
Cantarella and Fedele [5, 6], Quattrone and Vitetta [22] or by Hawas [13].

2.2 Definition of the Choice SetIi

We assume that the fraction of the demand dod on each path is proportional to its
convenience. The proposed method is based on the research of “non dominated2” paths
for the O/D pair. We carry on this research by the comparison of the characteristic
points of every TFN. We find the non-dominated paths set by the dominance check.
A path is considered as non-dominated from the minimum cost one if the lower limit of
its TFN is lower than the upper limit of the TFN of the minimum cost path. In Fig. 2
the dashed TFN (20, 25, 30) represent the fuzzy minimum cost path, while the con-
tinuous line represents a non-dominated path since its TFN’s lower limits (i.e. xL = 24)
is lower that the upper limit of the minimum cost TFN (i.e. xR = 30).

To obtain the non-dominated paths set for each O/D pair without explicit paths
enumeration it is possible to use the algorithm proposed in [19] based on the multiple
labelling approach, where a number of non-dominated paths can be generated. In
addition, the multiple labelling approaches are an exhaustive approach, in which all the
possible paths from the source node to the other nodes have to be compared. To this
purpose, we modify the algorithm in the step of dominance check according to our
method.

The value of a plays an important role in the phase of selection of the paths that will
define the choice set. The number of the paths in the choice set depends from the
imprecision of costs estimation: the more imprecise are the cost, the higher is the
number of elements in the choice set.
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Fig. 2. Example of non-dominated paths

2 The “non dominated” paths are the most convenient paths [19].
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For example, let us consider three paths (A, B, C). Let their estimated costs be
equal respectively to x≅25, y≅30 and z≅40 min. The relevant TFN can be represented
by the following triples:

TFNA(xL, 25, xR), TFNB(yL, 30, yR) and TFNB(zL, 40, zR) where

xR ¼ x � ð1þ aÞ; xL ¼ x � ð1� aÞ

yR ¼ y � ð1þ aÞ; yL ¼ y � ð1� aÞ

zR ¼ z � ð1þ aÞ; zL ¼ z � ð1� aÞ

If we aim at modelling low imprecision, a must assume a low value. Let a be equal to
0.050. We see that paths B and C are dominated from A, as a result only minimum cost
path is considered by users in their choice set (Fig. 3).

If we want model more imprecision in perceived cost than the previous case, a must
assume a higher value. Let a be equal to 0.150 (Fig. 4). In this case the path C only is
dominated by A: the choice set is made up of paths A and B.
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Fig. 3. Example of dominated paths (a = 0.050)
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Fig. 4. Example of dominated paths with a = 0.150
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As final case, let be a = 0.300. In this case there are not dominated paths, so that
the choice set is made up of the paths A, B, C all (Fig. 5).

2.3 Coefficients of Preference

In the previous section, we have shown how to determine (by the dominance check) the
choice set for every O/D pair. In this section we are going to show how the demand dod
are split among the paths. We assume that the share of demand that will load each path
be proportional to the path convenience (utility). In our hypothesis users associate a
preference index to each path according to the estimated (perceived) costs.

In this phase, consider the case of independent paths (i.e. they do not have any
shared sub-path). In the next section it will be shown how to deal with the case of
shared (overlapping) sub-paths.

Then, we associate a numerical value to the convenience of each non-dominated
paths. We define for the i-th path the coefficient of preference as follows:

Cpref;i ¼ min-cost;R � i-cost;Lð Þ = i-cost;R � i-cost;Lð Þ ð1Þ

where:

– min-cost is the crisp value of the minimum cost path;
– i-cost is the crisp value of the path i;
– min-cost,R = min-cost�(1 + a): i.e. the upper limit of the TFN associated to the

minimum cost path;
– min-cost,L = min-cost�(1 − a): i.e. the lower limit of the TFN associated to the

minimum cost path;
– i-cost,R = i-cost�(1 + a): i.e. the upper limit of the TFN associated to the path i;
– i-cost,L = i-cost�(1 − a): i.e. the lower limit of the TFN associated to the path i;

The coefficient of preference for path i is given by the ratio between the shared part
of the basis of the two TFNs and the base of the TFN associated to path i. The value of
Cpref,i for every path is between zero and one. In the Fig. 6 we see an example:
a = 0.200; min-cost = 3; min-cost,L = 2.4; min-cost,R = 3.6; i-cost = 4; i-cost,
L = 3.2; i-cost,R = 4.8.

10 15 20 25 30 35 40 45 50
Cost

0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

de
gr

ee

Fig. 5. Example of dominated paths with a = 0.300
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The coefficient of preference is equal to 1 for the minimum cost path. For the other
paths, it is lower as much as higher its crisp cost is. We assume that the probability of
choice of a certain path (and consequently the demand fraction that will be assigned to it)
is proportional to its coefficient of preference. We calculate the choice probability of the
non-dominated paths by the normalisation of the coefficients of preference as follows:

p0i ¼ Cpref;i=
X

Cpref;i ð2Þ

Let us focus on the following explaining examples.
Let consider a user whose choice set is made up of two independent paths, namely

A and B. Let the cost of B be 10 min greater than the cost of A. What path does the
user choose? Under the assumption of rational decision-maker user, if his estimation of
the path costs were precise, he/she would choose path A that maximize his/her utility.
This is true for any value of the cost of paths A and B when B cost is greater than A
cost. Therefore, the choice probability of A will be always equal to 100%. In the
reality, users do not assume an exact estimation of the path costs [15] because of many
source of uncertainty such as approximate reasoning of human beings, different tastes
and perception of transportation supply etc. Therefore, choice probabilities depend
(differently from the previous case) on the values of path costs and the degree of
imprecision/approximation.

For example: let A cost be equal to 2 min and let B cost be equal to 12 min. The
user knows that path A will cost about 2 min and path B will cost about 12 min. It is
proper to assume that the choice set will be formed by the A path only. In other words,
we expect that the choice probability of A will be equal to 100%. Now suppose that A
and B costs are equal respectively to 40 min and 50 min. The user knows that path A
will cost about 40 min and path B will cost about 50 min. Probably he/she will choice
also path B, even if path A is clearly more convenient. As a result, we expect that the
choice probability of path B will be greater than zero, even if it will be quite smaller
than the choice probability of path A. Now suppose that A cost and B cost are equal
respectively to 5 h and 20 min and 5 h and 30 min. The user knows that path A will
cost about 5 h 20’ and path B will cost about 5 h 30’. Probably the two paths look
convenient in the same measure. As a result, the choice probability of the two paths
will be very near to 50%.
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Fig. 6. Representation of path cost membership functions
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In the following Table 1 we have summarized the choice probability values
obtained by applying the proposed method in the described three examples.

Note that the results are realistic for any combination of path cost values, and we
obtained these results utilizing only one value of a for modelling the imprecision.

2.4 Overlapping Paths

In general, the paths belonging to the choice set could be partially overlapping [8]. If
three or more paths form the choice set we may have unrealistic results (two of them
may be overlapping in a certain measure). In this case, by applying the proposed
method we may have unrealistic results. To avoid this problem it is necessary to
properly define the estimation of choice probabilities.

We introduce an index for evaluating the overlapping degree of each path with the
others. We describe the path overlapping in terms of length of shared sub-paths.
Therefore, the index will be defined referring to the relevant arc lengths. The coefficient
of overlapping for the path i is defined as follows:

Cover;i ¼ ½ Li;1=Li
� � þ Li;2=Li

� � þ . . . þ Li;i�1=Li
� � þ Li;iþ 1=Li

� � þ . . .þ Li;n=Li
� �� = nover

ð3Þ

with

– Li is the length of the path i;
– Li,1(Li,2, Li,3…) is the length of the shared sub-paths by the path i and the path 1 (2,

3,…,);
– nover is the number of path partially overlapping in the choice set.

This coefficient is equal to zero for the independent paths. For the overlapping
paths, it returns a value that increases proportionally to the length of the shared
sub-paths. The value of the coefficient of overlapping is in every case less than one.
Now we introduce the coefficient of independence as follows:

Cind;i ¼ 1� Cover;i

It has the opposite meaning of the coefficient of overlapping. It is equal to 1 if path
i is independent; it is less than 1 if path i has some shared sub-paths. In every case it is

Table 1. Choice probability values (a = 0.150)

Path A B A B A B

Cost 20 120 400 500 5h 20
0
5h 30

0

Choice probability 1.000 0.000 0.811 0.189 0.531 0.469
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greater than zero. We can now calculate the choice probabilities of the non-dominated
paths as follows:

pi ¼ Cpref;i � Cind;i=
X

Cpref;i � Cind;i ð4Þ

If the paths are all independent, all the coefficients of independence are equal to one.
As a result, the choice probabilities are the same that we will obtain if we applied the
normalisation of the coefficients of preference (as we describe in the previous section).
Therefore, that case may be considered as a particular case. In this way, we obtain
results more realistic in the case (very common in urban networks) of overlapping
paths.

As example, let consider the following case. Let the choice set be made up of
n paths: one independent path and (n−1) practically coincident paths. Let all the paths
have the same cost. In this situation, all the coefficients of preference are equal to one.
If we calculate the probability without consider the overlapping (i.e. by the Eq. (2)), we
obtain that all the paths will have choice probability equal to 1/n. This is actually far
from reality. In fact, because of the overlapping, users perceive only two effective
alternatives, and will associate to them the same preference as they have the same costs.
Therefore, the independent path (first alternative) will have probability of choice equal
to 0.50, such as the totally of the remaining paths (second alternative). Each one of
these paths has the same cost, so the choice probability of the generic overlapping path
will be equal to 0.50/(n−1). If we apply the Eq. 4, we obtain exactly these results.

3 Numerical Analyses

Let us consider the network represented in Fig. 7 with six paths connecting the origin
O with the destination D. Let the first one be independent and let its cost be equal to 40.
Let the other paths cost be equal to 30. Because of the overlapping, paths 4, 5, 6 are
practically the same.

6(30)

5(30)

4(30)

3(30)

2(30)

1(40)

O D

Fig. 7. Test network with overlapping paths
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By applying the Eq. 3, the coefficient of overlapping is equal to zero for paths 1, 2,
3; and it is equal to 2/3 = 0,667 for paths 4, 5, 6. The expected path choice probability
vector (P1, P2, P3, P4, P5, P6) must have the following characteristics:

1. P2 = P3 (because path 2 and path 3 have the same cost and are both independent);
5. P4 = P5 = P6 (because path 4, path 5 and path 6 have the same cost and are

overlapping in the same measure);
6. P1 < P2, P3 (because all paths 1, 2, 3 are independent, but path 1 cost is greater than

the others);
7. P2, P3 = P4 + P5 + P6 (because paths 4, 5, 6 form only one alternative, due to their

high overlapping, which is as convenient as the alternatives given by paths 2 and 3 -
which are independent. Consequently, we expect that users associate the same
choice probability to path 2, path 3 and the group of the paths 4, 5, 6).

The following Table 2 shows the results given by the proposed model where we
assumed a = 0.150. Estimated choice probabilities values reflects all the conditions just
exposed, properly reproducing what we expect in route choice behaviour.

4 Equilibrium Assignment

In this case we considered the test network represented in (Fig. 8). To solve the traffic
equilibrium problem the MSA (method of successive averages) has been used and then
the equilibrium flows on the test network calculated. A sensitivity analysis has been
carried out by considering different conditions of length or capacity of certain arcs and
travel demand.

The considered network has six paths connecting the O/D pair form origin 1 to
destination 9 (Fig. 8). The arc costs are calculated by the well known BPR cost
function:

C ¼ C0 � ð1þ a � fl=Caplð ÞcÞ

where:

– C0 is the free flow cost;
– Capl is capacity of the arc l;
– fl is the flow of the arc l;
– a and c are parameters of the function.

Table 2. Simulation results

Path Lower limit Crisp cost Upper limit Cpref,i P0
i Cover,i Cind,i Cpref,i�Cind,i Pi

1 34.00 40.00 46.00 0.042 0.008 0.000 1.000 0.042 0.012
2 25.50 30.00 34.50 1.000 0.198 0.000 1.000 1.000 0.329
3 25.50 30.00 34.50 1.000 0.198 0.000 1.000 1.000 0.329
4 25.50 30.00 34.50 1.000 0.198 0.667 0.333 0.333 0.110
5 25.50 30.00 34.50 1.000 0.198 0.667 0.333 0.333 0.110
6 25.50 30.00 34.50 1.000 0.198 0.667 0.333 0.333 0.110
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We assumed a = 2, c = 4. We also assumed for each arc the capacity be 1000 and
free-flow costs equal to 2. We perform several traffic assignments, considering different
conditions of the network. For each condition, we applied our model achieving dif-
ferent tests for different values of a. We compared our results with those obtained by
applying C-Logit model [7, 8], for different values of his parameters, h and b0.

The obtained results will be reported in the next section where the different con-
sidered conditions will be described.

4.1 Case 1 - Paths with the Same Free-Flow Cost

Let us consider the following situation: all the arcs have free-flow cost equal to 2,
consequently free flow paths cost are all equal to 8. The assignment with C-Logit
model [8] shows that the average user cost increases as much as the value of h
increases. The same happens applying the proposed model and increasing the value of
a. In fact, h and a represent (in different ways) the imprecision of the estimated path
costs. If imprecision increases, we expect that more users will choice paths that are
different from the most convenient one, with the consequence that the average user cost
increases. This situation is correctly represented by increasing h and a both in C-Logit
and in our model.

This results were obtained for all the considered assignment cases, that are
described as follows.

The vector of the arc flows at the equilibrium obtained by applying our model
varies not much by changing the parameter a. We perform the traffic assignments by
varying a in the interval 0.100 � 0.300. The index RMSE% is always lower than 5%
between two probability vectors (obtained by our model with two different values of a,
for the same configuration of the network).

Moreover, we saw good correspondence with C-Logit results assuming for the
C-Logit parameters the values h = 2.5 and b0 = 1.

Fig. 8. Test network (Origin 1; Destination 9)
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Case 1a - Variation of the capacity of certain arcs. Case 1a1 - Consider the arc 4
(from node 2 to node 5) with capacity equal to 500 (that is the half respect the previous
case). We see that the average user cost increases respect to case “1” (we considered the
comparison between the results obtained by one model without changing the values of
its parameter). This is what we expect. In fact, the reduction of the capacity of one arc
will induce an increasing of the network congestion (with the same demand), and
obviously of the average user cost.

Case 1a2 - Consider now arc one with doubled capacity (thus equal to 2000). As we
expect, we have from the results of the assignments that the average user cost is lower
than in case “1”. In fact, the increasing of the capacity of one arc will induce a
reduction of the network congestion (with the same demand) and of the average user
cost. The best correspondence for the results obtained by our model and C-Logit model
are obtained when we assumed C-Logit parameter with these values: h = 2.5 and
b0 = 1.

Case 1b - Variation of travel demand. Consider the arcs having the same capacity
and free flow costs as in case “1”, but let the demand be equal to 1800. We see that the
average user cost is higher than case “1”, as we expect. In fact, the increasing of the
demand will induce an increasing of the costs of the relative paths, so the total cost (and
obviously the average user cost) will increase.

4.2 Case 2 – Variation of Free-Flow Cost

Case 2a - Let the free-flow cost of the arcs 3 and 5 be C0 = 1.5 instead of 2. We see
that the average user cost is lower than the case “1”, as we expect. In fact, the reduction
of the length of two arcs (and as a result the reduction of the correspondent free-flow
cost) will generate a decreasing of the costs of the relative paths. Therefore, we see that
the total cost and the average user costs decrease (with the same demand).

Case 2b - Consider the free-flow cost of the arc 4 and 8 very higher than the other arc
costs. We expect that users will not consider these arcs, and consequently the relative
paths (B [1-2-5-6-9], C [1-2-5-8-9], and D [1-4-5-6-9]).

The other paths (A [1-2-3-6-9], E [1-4-5-8-9], F [1-4-7-8-9]) have the same free
flow cost. Moreover, path A is independent; path E and path F have the same degree of
overlapping. We expect that the users will not perceive three different alternatives, but
only two alternatives having the same length (the first one is path A and the second one
is the group of paths E and F). The second alternative may be considered as a path
containing a sub-path made of two parallel arcs having the same length. Practically, in
this sub-path the capacity is doubled. Consequently, the congestion on them will be
lower than on the other arcs. Thus, the second alternative is better than the first one
(path A), so we expect that it will be chosen by the majority of the users. We also
expect that on the overlapping sub-paths (E and F) the demand will be split in two
equal proportions.

At the equilibrium, our model gives the following path choice probabilities
(Table 3).

464 M. Binetti et al.



Paths B, C, D are dominated. In the Fig. 9, the representation of the TFNs relative
to all the paths has been reported. Path E and path F have the same cost, such as path C
and path D. As a result, the relative TFN are coincident.

The model gives the expected results: the majority of the users chooses path E and
path F, and fractions itself on them in equal parts. The vector of the choice probabilities
changes not much by varying the value of a(3) (PA = 0.439 if a = 0.100; PA = 0.430 if
a = 0.200; PA = 0.425 if a = 0.300).

5 Conclusion

The aim of this work was to propose a path choice model where fuzzy numbers are
utilised to represent the imprecision in the estimation of path costs in road network. The
model allow to easily obtain the path choice probabilities overtaking some issue of
Logit route choice model and explicitly considering users imprecision in cost per-
ception. By using fuzzy numbers it is possible to consider the non-linearity between the
value of path utility and the values of the attributes. The performed applications of the

Table 3. Traffic assignment results (a = 0,200)

Path Lower limit Crisp cost Upper limit Cpref,i Cover,i Cind,i Pi
A [1-2-3-6-9] 6.840 8.549 10.259 1.000 0.000 1.000 0.430
B [1-2-5-6-9] 35.420 44.275 53.130 – – – 0.000
C [1-2-5-8-9] 21.268 26.584 31.901 – – – 0.000
D [1-4-5-6-9] 21.268 26.584 31.901 – – – 0.000
E [1-4-5-8-9] 7.115 8.894 10.673 0.884 0.250 0.750 0.285
F [1-4-7-8-9] 7.115 8.894 10.673 0.884 0.250 0.750 0.285
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Fig. 9. Membership function

3 If a is greater than 0.520 path 3 and path 4 become non-dominated, if a is greater than 0.685 also
path 2 become non-dominated (these values of a are not much representatives).
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model has given realistic results in all the cases we have examined. It is important to
remark that the proposed model is based on one parameter only. Moreover, we need
only one value of this parameter to represent correctly users imprecision; both in first
phase (selection of non-dominated paths) and in second phase (attribution of choice
probabilities). Actually, users may have the problem of choosing between partially
overlapping paths. Our model may give unrealistic results due to the IIA property as for
Logit based models. To avoid this problem, we propose a correction of the calculation
of choice probabilities introducing an index that allows to consider path overlapping. In
this way, we obtained realistic results in the load assignment of the network in all the
cases we have examined. In the traffic equilibrium assignment, we observe that
parameter a is capable to represent the imprecision of the users when they estimate path
costs. If the imprecision will increase then a increases. The results of the traffic
assignment considering different conditions of the network show that there is a simi-
larity with respect to the C-Logit model that we used as benchmark. The more is the
imprecision we want to model, the higher the values of a and h (for the C-Logit) must
be. In this situation, we observe that the average user cost increases applying both our
model and C-Logit model, and this is what we expect. Further investigations will be
devoted to the analysis of real sized networks.
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